
Kubernetes

GOL D E N GUID E T O CE R T IFIE D

KUB E R NE T E S A PPL ICA T ION D E VE L OPM E NT

by Matthew Palmer

App Development

Overview
Kubernetes is an operating system for running web services. You tell it to

run a process, the characteristics of that process, and the resources that

process needs. It will run that process—but unlike a normal operating

system, it can run it across an entire cluster of computers.

Fundamentally, Kubernetes lets you run processes on a cluster of

computers without caring about the cluster itself. As a result, you get

access to some powerful Kubernetes features:

• guarantee the process is always running, and if it stops, restart it,

potentially on a different machine

• make sure there are a certain number of the process running

• run the process at a certain time, and check that it's successful

You don't have to worry about any details of the machines your process is

running on. Kubernetes manages the machine itself, watches out for

failures, tracks resource usage, and configures networking rules.

Kubernetes Objects
Your application environment is defined by a collection of objects.

Kubernetes provides many types of objects, all with unique

characteristics, that you combine to perform specific tasks.

The two most basic attributes of

any Kubernetes object are the

Kubernetes API version it's from and

the kind of object it is.

An object also has metadata. Like

metadata in other contexts, it stores

meta-information about the object

itself. In the case of Kubernetes

objects, this is the object's name, its

labels, and its annotations.

The two most important properties

of an object are spec and status.

spec is how you define your object

Kubernetes Application Development Sample

A Kubernetes Object

Metadata

Spec

Status

Version

Kind Pod, Service, …

Your desired state

Kubernetes’ actual state

v1, v1beta1, …

Name
Labels
Annotations

—it tells Kubernetes the desired state of your object. status is reality—it's

where Kubernetes stores how your object is actually running. If the actual

state (status) differs from the ideal state (spec), Kubernetes will act to get

that object to its ideal state.

You might find this description very high level and abstract. However, this

pattern appears repeatedly in Kubernetes—use it as a scaffold to which

you attach your learning in the next chapters.

As a concrete example, here’s an annotated YAML configuration file that

defines a Pod running nginx.

Which version of Kubernetes this object comes from
apiVersion: v1
What type of object am I?
kind: Pod

Metadata - Meta-information about the object itself

metadata:
 name: nginx-pod
 # (Labels and metadata will be explained later!)
 labels:
 key: value
 metadata:
 otherkey: othervalue

Spec - what you want your object to be

spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Kubernetes Application Development Sample

