
 

Kubernetes Application Development Page of 1 1

Kubernetes
App Development

GOLDEN GUIDE TO  
KUBERNETES APPLICATION DEVELOPMENT

By Matthew Palmer

Table of Contents
Table of Contents 1
Kubernetes for app developers 4
Preamble 5
Reference materials 6

Physical implementation diagram 6

Conceptual diagram 7

Glossary 8

Installation 12
Installing Kubernetes and Docker 12

Installation guide 12

Come together 13

Interacting with Kubernetes 14
Kubernetes CLI 14

Understanding kubectl commands 16

Containers 18
Docker and containers 18

Pods 22
Kubernetes System Overview 28

Components 28

Objects 32

The apiVersion field 33

Pods in detail 34
Overview 34

Pod lifecycle 34

Advanced configuration 36

Custom command and arguments 36

Environment variables 37

Liveness and Readiness 38

Security Contexts 41

Multi-container pod design patterns 42

Sidecar pattern 43

Adapter pattern 45

Kubernetes Application Development Page of 1 106

Ambassador pattern 47

Labels, selectors, annotations 48
Namespaces 48

Labels 49

Selectors 50

Annotations 52

Deployments 53
Overview 53

Deployment YAML 55

Rolling updates and rolling back 56

Scaling and autoscaling 59

Services 61
Overview 61

How is a request to a service routed through Kubernetes? 64

Deployments and Services Together 68
Storage 72

Volumes 72

Types of Volumes 73

Persistent Volumes 75

Persistent Volumes 75

Persistent Volume Claims 75

Lifecycle 77

Configuration 78
ConfigMaps 78

Secrets 81

Jobs 84
Overview 84

Jobs 84

CronJobs 87

Resource Quotas 89
Service Accounts 95
Network Policies 96

Networking Overview 96

Network policies 96

Kubernetes Application Development Page of 2 106

Debugging, monitoring, and logging 98
Debugging 98

Monitoring 99

Logging 100

CKAD exam guide 101
Background 101

Exam style 101

Assumed skills 102

Content 102

Sample questions 103

Other advice 103

Practice exam 105

Kubernetes Application Development Page of 3 106

Containers
Docker and containers
Containerization is packaging an application, its dependencies, and its

configuration into a single unit. This unit is called an image. The image is

then used as a template to construct live, running instances of this image.

These running instances are called containers. A container consists of the

image, a read-write filesystem, network ports, resource limits, and other

runtime configuration. Docker is the most popular way to build images

and run containers, and is what we use in this book.

Consider a simple Node.js application that has not been containerized. If

you were deploying this on a fresh virtual machine, you'd need to:

• install the operating system

• install the Node.js runtime

• copy your application's source code into place

• run your code using Node

Of that list, you really only take responsibility for your source code. When

you deploy a new version of your application, you just swap out the old

source code for the newer version. The operating system and Node.js

stays in place.

When you package your application into a container, you take

responsibility for everything you need to run your application—the OS, the

runtime, the source code, and how to run it all. It all gets included into the

image, and the image becomes your deployment unit. If you change your

source code, you build a new image. When you redeploy your code, you

instantiate a new container from the image.

Conceptually, this is great. Encapsulate everything your application needs

into a single object, and then just deploy that object. This makes

Kubernetes Application Development Page of 18 106

deployment predictable and reproducible—exactly what you want for

something that’s typically outside an application developer’s expertise.

But alarm bells might be ringing: why aren't these images huge and

expensive to run? The image includes the whole operating system and

the Node.js runtime!

Docker uses layers—read-only intermediate images—that are shared

between final images. Each command used to generate the Docker

image generates a new intermediate image via a delta—essentially

capturing only what changed from the previous intermediate step. If you

have several applications that call for the Ubuntu operating system in

their Dockerfile, Docker will share the underlying operating system layer

between them.

There are two analogies that might help depending on your familiarity

with other technologies. React—the JavaScript framework—re-renders all

your UI whenever your application's state changes. Like including an

operating system in your application deployment, this seems like it

should be really expensive. But React gets smart at the other end—it

determines the difference in DOM output and then only changes what is

necessary.

The other analogy is the git version control system, which captures the

difference between one commit and the previous commit so that you can

effectively get a snapshot of your entire project at any point in time.

Docker, React, and git take what should be an expensive operation and

make it practical by capturing the difference between states.

Let's create a Docker image to see how this works in practice. Start a new

directory, and save the following in a file called Dockerfile.

Get the Node.js base Docker image - shared!
FROM node:carbon
Set the directory to run our Docker commands in
WORKDIR /app
Copy your application source to this directory
COPY . .
Start your application
CMD ["node", "index.js"]

Kubernetes Application Development Page of 19 106

Then, let's write a simple Node.js web server. Create the following in a file

called index.js.

In the directory, open a new shell and build the Docker image.

Now that we've built and tagged the Docker image, we can run a

container instantiated from the image using our local Docker engine.

index.js
var http = require('http');
var server = http.createServer(function(request, response) {
 response.statusCode = 200;
 response.setHeader('Content-Type', 'text/plain');
 response.end('Welcome to the Golden Guide to Kubernetes
Application Development!');
});
server.listen(3000, function() {
 console.log('Server running on port 3000');
});

$ docker build . -t node-welcome-app
Sending build context to Docker daemon 4.096kB
Step 1/4 : FROM node:carbon
carbon: Pulling from library/node
1c7fe136a31e: Pull complete
ece825d3308b: Pull complete
06854774e2f3: Pull complete
f0db43b9b8da: Pull complete
aa50047aad93: Pull complete
42b3631d8d2e: Pull complete
93c1a8d9f4d4: Pull complete
5fe5b35e5c3f: Pull complete
Digest:
sha256:420104c1267ab7a035558b8a2bc13539741831ac4369954031e0142b565fb7b5
Status: Downloaded newer image for node:carbon
 ---> ba6ed54a3479
Step 2/4 : WORKDIR /app
Removing intermediate container eade7b6760bd
 ---> a8aabdb24119
Step 3/4 : COPY . .
 ---> 5568107f98fc
Step 4/4 : CMD ["node", "index.js"]
 ---> Running in 9cdac4a2a005
Removing intermediate container 9cdac4a2a005
 ---> a3af77202920
Successfully built a3af77202920
Successfully tagged node-welcome-app:latest

Kubernetes Application Development Page of 20 106

The output of docker ps tells us that a container with ID a7afe78a7213 is

running the node-welcome-app image we just built. We can access this

container using port 32772 on localhost, which Docker will forward to the

container's port 3000, where our application server is listening.

$ docker run -d -p 3000 node-welcome-app
a7afe78a7213d78d98dba732d53388f67ed0c3d2317e5a1fd2e1f680120b3d15
$ docker ps
CONTAINER ID IMAGE COMMAND PORTS
a7afe78a7213 node-welcome-app "node index.js" 0.0.0.0:32772->3000

$ curl 'http://localhost:32772'
Welcome to the Golden Guide to Kubernetes Application Development!

Kubernetes Application Development Page of 21 106

Pods
By this point, we've successfully used Docker to build an image, and then

used Docker to run a container—an instantiation of that image. We could

keep creating images and manually starting them up with Docker, but this

would be laborious.

Docker wasn't designed to coordinate running hundreds of containers

across multiple computers. Its responsibility is to build images and run

containers—it's a container runtime.

This is where Kubernetes comes in.

Kubernetes is a container orchestration system—it automates the

deployment and scaling of containers. Kubernetes' responsibility is to

manage hundreds of containers across many computers. It takes control

of their uptime, networking, storage,

and scheduling. When it needs to

actually run a container, Kubernetes

leaves that responsibility to the

container runtime. The most popular

container runtime is Docker, which is

what we use in this book, but

Kubernetes also supports other

container runtimes like rkt and

containerd.

 
Rather than working with containers

directly, Kubernetes adds a small

layer of abstraction called a pod. A

pod contains one or more containers,

and all the containers in a pod are guaranteed to run on the same

machine in the Kubernetes cluster. Containers in a pod share their

networking infrastructure, their storage resources, and their lifecycle.

In the previous chapter, we ran our Node.js web server using the docker
run command. Let's do the equivalent with Kubernetes.

Creating a Kubernetes pod

We're going to create a Dockerfile that defines a Docker image for a

simple web server that runs on Node.js. We'll use Docker to build this

Kubernetes Application Development Page of 22 106

image. This is essentially the same as what we did in the previous chapter.

But instead of using docker run to create a container running the image,

we'll define a pod in Kubernetes that uses the image. Finally, we'll create

the pod in Kubernetes, which runs the container for us. Then we'll access

the pod and make sure our container is running.

First, let's create a simple web server using Node.js. When a request is

made to localhost:3000, it responds with a welcome message. Save this

in a file called index.js.

Next, we'll create a Dockerfile—the file that gives Docker instructions on

how to build our Docker image. We start from the Node.js image, mix in

our index.js file, and tell the image how to start containers when they

are instantiated.

Now we've got to build this image. Take note that we need to make sure

this image is available to the Docker engine in our cluster. If you're

running a cluster locally with Minikube, you'll need to configure your

Docker settings to point at the Minikube Docker engine rather than your

local (host) Docker engine. This means that when we do docker build, the

image will be added to Minikube's image cache and available to

index.js
var http = require('http');
var server = http.createServer(function(request, response) {
 response.statusCode = 200;
 response.setHeader('Content-Type', 'text/plain');
 response.end('Welcome to the Golden Guide to Kubernetes
Application Development!');
});
server.listen(3000, function() {
 console.log('Server running on port 3000');
});

Dockerfile
FROM node:carbon
WORKDIR /app
COPY . .
CMD ["node", "index.js"]

Kubernetes Application Development Page of 23 106

Kubernetes, not our local one, where Kubernetes can't see it. You will

need to re-run this command each time you open a new shell.

The -t flag specifies the tag for an image—by convention it's the name of

your image plus the version number, separated by a colon.

Now that we've built and tagged an image, we can run it in Kubernetes by

declaring a pod that uses it. Kubernetes lets you declare your object

configuration in YAML or JSON. This is really beneficial for communicating

your deployment environment and tracking changes. If you're not familiar

with YAML, it's not complicated—search online to find a tutorial and you

can learn it in fifteen minutes.

Save this configuration in a file called pod.yaml. We'll cover each field in

detail in the coming chapters, but for now the most important thing to

note is that we have a Kubernetes pod called my-first-pod that runs the

my-first-image:1.0.0 Docker image we just built. It instantiates this

image to run in a container called my-first-container.

$ eval (minikube docker-env)
This command doesn't produce any output.
What does it do? It configures your Docker settings
to point at Minikube's Docker engine, rather than the local one,
by setting some environment variables.
set -gx DOCKER_TLS_VERIFY "1";
set -gx DOCKER_HOST "tcp://192.168.99.100:2376";
set -gx DOCKER_CERT_PATH "/Users/matthewpalmer/.minikube/certs";
set -gx DOCKER_API_VERSION "1.23";
$ docker build . -t my-first-image:1.0.0
Sending build context to Docker daemon 4.096kB
Step 1/4 : FROM node:carbon
 ---> ba6ed54a3479
Step 2/4 : WORKDIR /app
 ---> Using cache
 ---> 3daa6d2e9d0b
Step 3/4 : COPY . .
 ---> c85c95b4a4be
Step 4/4 : CMD ["node", "index.js"]
 ---> Running in 2e68c5316ed9
Removing intermediate container 2e68c5316ed9
 ---> 4106fb401625
Successfully built 4106fb401625
Successfully tagged my-first-image:1.0.0

Kubernetes Application Development Page of 24 106

While you can create things directly on the command line with kubectl,

one of the biggest benefits of Kubernetes is that you can declare your

deployment environments explicitly and clearly through YAML. These are

simple text files that can be added to your source control repository, and

changes to them can be easily tracked throughout your application's

history. For this reason, we prefer writing our Kubernetes resources'

configuration into a YAML file, and then creating those resources from the

file.

When working with resources declared in a YAML file in Kubernetes, there

are several useful commands. All of them use the -f argument followed

by the path to the file containing our YAML.

kubectl create -f <filename> 
This command explicitly creates the object declared by the YAML. 

kubectl delete -f <filename> 
This command explicitly deletes the object declared by the YAML. 

kubectl replace -f <filename> 
This command explicitly updates a running object with the new one

declared by the YAML.  

kubectl apply -f <filename or directory> 
This command uses declarative configuration, which essentially gives

Kubernetes control over running create, delete, or replace operations to

make the state of your Kubernetes cluster reflect the YAML declared in

the file or directory. While using kubectl apply can be harder to debug

since it's not as explicit, we often use it instead of kubectl create and

kubectl replace.

kind: Pod
apiVersion: v1
metadata:
 name: my-first-pod
spec:
 containers:
 - name: my-first-container
 image: my-first-image:1.0.0

Kubernetes Application Development Page of 25 106

Choose either create or apply, depending on which makes more sense

to you, and create the pod.

Great! Our pod looks like it's running. You might be tempted to try to

access our container via http://localhost:3000 like we did when we ran

the container directly on our local Docker engine. But this wouldn't work.

Remember that Kubernetes has taken our pod and run its containers on

the Kubernetes cluster—Minikube—not our local machine. So to access

our Node.js server, we need to be inside the cluster. We'll cover

networking and exposing pods to the wider world in the coming chapters.

The kubectl exec command lets you execute a command in one of the

containers in a running pod. The argument -it allows you to interact with

the container. We'll start bash shell on the container we just created

(conceptually, this is kind of similar to SSHing in to your pod). Then we'll

make a request to our web server using curl.

We've successfully created a Docker image, declared a Kubernetes pod

that uses it, and run that pod in a Kubernetes cluster!

Common "dummy" images

While you're learning Kubernetes, tutorials conventionally use a few

"dummy" or "vanilla" Docker images. In practice, your images will be real,

production Docker images custom to your application. In this book, we

use these as a placeholder for your real application.

$ kubectl create -f pod.yaml
pod "my-first-pod" created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
my-first-pod 1/1 Running 0 11s

$ kubectl exec -it my-first-pod -c my-first-container bash
root@my-first-pod:/app # curl 'http://localhost:3000'
Welcome to the Golden Guide to Kubernetes Application Development!

Kubernetes Application Development Page of 26 106

http://localhost:3000
http://localhost:3000

Here are a few of the most common "dummy" images you'll see

throughout this book and tutorials online.

• alpine – a Linux operating system that is very lightweight but still

has access to a package repository so that you can install more

packages. Often used as a lightweight base for other utilities and

applications.

• nginx – a powerful, highly performant web server used in many

production deployments. It's widely used as a reverse proxy, load

balancer, cache, and web server. It's often used when tutorials need

a standard web server.

• busybox – a very space-efficient image that contains common Unix

utilities. It's often used in embedded systems or environments that

need to be very lightweight but still useful.

• node – an image of the Node.js JavaScript runtime, commonly used

for web applications. You'll also see variants of node based on

different base operating systems via different tags. For example,

node:8.11.3-alpine and node:8.11.3-jessie are two variants of

node:8.11.3 that use the alpine and jessie Linux distros

respectively

• Similarly, there are Docker images for php, ruby, python, and so on.

These have variants that you can use via different tags, similar to the

node image.

Now let's take a step back and take in the bigger picture of how

Kubernetes works. 

Kubernetes Application Development Page of 27 106

	Table of Contents
	Kubernetes for app developers
	Preamble
	Reference materials
	Physical implementation diagram
	Conceptual diagram
	Glossary
	Installation
	Installing Kubernetes and Docker
	Installation guide
	Come together
	Interacting with Kubernetes
	Kubernetes CLI
	Understanding kubectl commands
	Containers
	Docker and containers
	Pods
	Kubernetes System Overview
	Components
	Objects
	The apiVersion field
	Pods in detail
	Overview
	Pod lifecycle
	Advanced configuration
	Custom command and arguments
	Environment variables
	Liveness and Readiness
	Security Contexts
	Multi-container pod design patterns
	Sidecar pattern
	Adapter pattern
	Ambassador pattern
	Labels, selectors, annotations
	Namespaces
	Labels
	Selectors
	Annotations
	Deployments
	Overview
	Deployment YAML
	Rolling updates and rolling back
	Scaling and autoscaling
	Services
	Overview
	How is a request to a service routed through Kubernetes?
	Deployments and Services Together
	Storage
	Volumes
	Types of Volumes
	Persistent Volumes
	Persistent Volumes
	Persistent Volume Claims
	Lifecycle
	Configuration
	ConfigMaps
	Secrets
	Jobs
	Overview
	Jobs
	CronJobs
	Resource Quotas
	Service Accounts
	Network Policies
	Networking Overview
	Network policies
	Debugging, monitoring, and logging
	Debugging
	Monitoring
	Logging
	CKAD exam guide
	Background
	Exam style
	Assumed skills
	Content
	Sample questions
	Other advice
	Practice exam

